Tag Archives: career

When Does Counting Lines of Code Make Sense?

ALERT: I’m not pulling any punches with this one. If you are looking for a balanced argument including thoughts on some potentially good reasons to measure LoC, you won’t find it here. The best reasoning I can give for the existence this article: it gives me something to point people to when they ask for my opinion on the topic.

Counting Added Lines of Code as a Measure of Productivity

“Any process or procedure that incentivises based on creation or destruction of lines of code is missing the point entirely.”

David Adsit
Software Craftsman – Pluralsight

Counting LoC drives bad behavior and is easily manipulated. It leads to developers being less concise and writing code that is difficult to maintain. There are so many ways to write code less efficiently and these are exploited in a scenario where LoC are measured for productivity.

Here is one extremely simple example of code inflation:

Arrays.fill(array, -1);

and

for(int i = 0; i < array.length; i++)
{
  array[i] = -1;
}

The above examples logically equivalent in Java. They both work. They both do the exact same thing. In C# the first could look like the following:

array = Enumerable.Repeat<int>(-1, array.Length).ToArray();

We could also write our own C# extension method to match the simpler Java method and use it throughout the code in future improving readability and maintainability.

public static void Fill(this int[] array, int fillValue)
{
  for(int i = 0; i < array.length; i++)
  {
    array[i] = fillValue;
  }
}

Once complete, it would be executed as follows:

array.Fill(-1);

This approach would lead to a couple of additional lines when it is first written ONCE and then only one line to do the same work forever after. Assuming of course that people know the extension method exists and they use it… another discussion perhaps.

One of the reasons we use modern programming languages is because they are expressive and easy to read. Even in a current modern language, older and more verbose approaches are still valid in code (to enable us to customize better approaches on our own that are not supported by the framework) and can easily be exploited by developers looking to boost their LoC written.

Counting Added LoC as a Measure of Productivity Must be Based on False Assumptions

“[Counting lines of code as a measure of productivity] presumes that each day or week or month is the same as the last day, week, or month, and that the thought stuff we actually get paid to do doesn’t matter.”

Dwayne Pryce,
Senior Software Engineer Microsoft Research

Measuring added LoC also assumes the work completed before, after, and during the coding process to determine best/cleanest/most maintainable/efficient approaches are meaningless and that testing to verify that the code does what is was intended to do is a waste of time.

Additionally, less-experienced junior developers are always going to write more lines of code than senior people for a variety of reasons.

  1. Junior people often take the easiest, most brute force approach because they haven’t learned to do it better. Yet.
  2. Junior people are given less complex tasks to solve that can be done more quickly.
  3. Progressively more experienced people have additional increasing responsibilities (for example mentoring and training less experienced people, doing more code reviews, being involved in architecture/design discussions, taking on difficult roles like security guild, creating documentation, etc.

1 and 2 are arguably best solved by pair programming. Another discussion. Another time.

Counting Removed LoC as a Measure of Paying Technical Debt

“Simplicity is the ultimate sophistication.”

Leonardo da Vinci

Same as measuring added LoC, counting removed LoC drives bad behavior and can lead to developers writing code that is intentionally overcompact and difficult to read. However, in a large and unwieldy application, we want to remove lines that serve no purpose at every opportunity while maintaining the same functionality. If this were trivial, we could simply automate programming and developers would no longer be needed. Making things simpler is, simply put, not easy.

Counting LoC as a Measure of Quality

In the history of computer science, there has never been a valid correlation between LoC and quality in any programming language in existence. Check the textbooks, the internet, or anywhere else you can think of. This correlation does not exist.

The Burden of Unnecessary LoC is Non-trivial

“Measuring programming progress by lines of code is like measuring aircraft building progress by weight.”

Bill Gates

I’ll use a slightly exaggerated example here, but it isn’t too far off, so please bear with me. Let’s assume we have two people attempting to solve a difficult problem.

Persona A

  1. may be less experienced or expert beginner
  2. just get’s it “done”
  3. tends to solving problems hastily without concern for introducing bugs
  4. often works quickly and on their own without taking time for design discussion, planning, and refactoring
Persona B

  1. may be more experienced
  2. cares about quality and hates bugs
  3. aims to understand the scope of the problem before starting to solve it
  4. involves others (seeking real input) to suss out design flaws and make take more complex problems to a mentor

I’ve seen real life scenarios where Persona A will solve a similar problem in 2000-3000 LoC where Persona B would solve it with 200-300 LoC. That may not seem so bad. Maybe Persona A finished their effort in less time than Persona B. Now consider, from the time this code goes into production until it is replaced/removed/refactored/decommissioned, we have to pay to maintain the code that was written. When we want to make a change in the behavior of the

Maybe Persona A finished their effort in less time than Persona B. Now consider, from the time this code goes into production until it is replaced/removed/refactored, we have to pay to maintain the code that is written. When we want to make a change in the behavior of the code or add a new feature, Persona A’s code may require days of review to understand and will also require many changes to achieve. To make a similar change to Persona B’s code, it could be understood in an hour, perhaps. The changes should take considerably less time depending on their complexity.

When we want to make a change in the behavior of the code or add a new feature, Persona A’s code may require days of review to understand and will also require many changes to achieve. To make a similar change to Persona B’s code, it could be understood in an hour, perhaps. The changes should take considerably less time depending on their complexity. Of course, this scenario is hypothetical. This is my one apology for rhetoric.

Coda

For clarity’s sake, I’m in no way arguing against hiring junior people. Fresh blood is vital for tons of reasons I won’t go into here. However, the effective incorporation of junior people must be accompanied by the correct structure and support from more experienced people in order for them to succeed. I AM against hiring expert beginners who’ve been doing this work for many years and thinks the “just get it done” approach is the best/only way.

 

The Pursuit of Simplicity

Recently I read Seven Brief Lessons on Physics by Carlo Roveli. True to its title, the book is brief, and clocks in at a scant eighty-one pages. Its beauty is in the nearly poetic brevity and the expressive nature of the word choices the author (and translators) use. Unlike massive scientific tomes on particle physics I once attempted to read as a 12-year-old boy, Roveli’s book is written in a way I could have understood even as a young boy.

The book brought me a remembrance of the elasticity of young minds with its references to young physicists like Einstein, and his solving massive problems with simple solutions at a very young age. The book inspired me to write, and this is the result.

Fractal_tree_bbc

Anecdote Time

When I was a first-grade elementary school student, I recall having a tough time memorizing multiplication tables as students were taught to do at the time. Ever precocious, I wanted there to be some rhyme or reason, a pattern even, to the way we determined the values of these simple mathematical expressions. No, I was told, you just have to add the number you are multiplying by to itself the number of times the multiplier expresses.

For a young, and frankly lazy, Willy Munn, this was an annoyance at best for a number like one, two, and three; and completely unbearable for the silly number nine. You see, not being able to use a calculator or a multiplication table, and being required to show my work meant writing out nine addition problems just to “show my work” and get an acceptable grade.

My young brain started looking for a better way. It wanted to enable the laziness my heart so desired. It wanted to find a way for me to skip writing out these problems and allow me to go back to reading or playing with Lego blocks or watching the Superman movies I taped onto VHS from TV. I WANTED some rule as simple as “1 times anything is the number being multiplied” or “10 times anything is the number being multiplied with a 0 tacked onto the end”. I started to see patterns (we are talking about math after all, which is nothing without patterns). A solution for the ridiculously tedious number nine came first.

Looking at the following multiplication table, I unconsciously looked for patterns I could exploit. What patterns do you see?

1*9=9
2*9=18
3*9=27
4*9=36
5*9=45
6*9=54
7*9=63
8*9=72
9*9=81
10*9=90

I noticed the following in this approximate order:

Reversed Pairs of Numbers as Results
This was the first thing I noticed. 18 and 81, 27 and 72, and 36 and 63 all the results on opposite ends of the table form numeric palindromes. Even 09 and 90 technically work.

Everything Adds Up to Nine
Next, I realized that the first and second digit of every result always add up to 9. This seemed like something exploitable, and I saved the knowledge for later use.

First Digit Is The Number Being Multiplied By Minus One.
Eureka! I had a formula (even if I didn’t know that’s what it was called). I could take any number one through ten and subtract one from it for the first digit. Then I could subtract that number from nine to get the second digit. Simplicity itself!

I took my solution to Mrs. D, my first-grade teacher, for confirmation. I just knew she would be so happy and proud that I had found a better way to do multiplication by nines.

My youthful supposition couldn’t have been farther from the truth.

A study in human nature, being an interpretation with character analysis chart of Hoffman's master painting "Christ in the temple"; (1920)

Mrs. D. assured me that this was not the proper way to do the math and that I must write our all of my answers as she had taught. Needless to say, if young Willy Munn was a thing besides lazy, he was stubborn. I dug in my heels, so to speak. I refused to do this work stating that I would sooner die than do unnecessary work after I had found a better solution. Predictably, Mrs. D marched me right down to the principal’s office and demanded that he deal with my insubordination. She suggested corporal punishment if necessary.

The principal of my elementary school, Mr. F looked at me with kind, wise eyes, mostly gray hair, and just a quirk of a smile on the edge of his lips, and asked me to explain my method to him. I was nervous. I didn’t know what this corporal punishment was, but it sounded serious. With sweaty little palms and a mildly shaky voice, I explained my idea for the number nine. Mr. F asked some thoughtful questions and proved my hypothesis on the blackboard in his office. Then, to the joy of my young heart, he said the words I had so desired to hear from Mrs. D, “Willy, it looks like you’ve come up with a better way to solve this problem. At least for you.” Then the golden words of freedom, “Mrs. D, since this proves out, it shouldn’t be necessary for Willy to write out all of his multiplication solutions should it?” Mrs. D grudgingly agreed with her boss, although I’m fairly sure she held a cold, dark place in her heart for me for the rest of the year. In retrospect, maybe I shouldn’t have challenged her so directly, but I was 6 and thought the world revolved around me.

Mrs. D grudgingly agreed with her boss, although I’m fairly sure she held a cold, dark place in her heart for me for the rest of the year. In retrospect, I shouldn’t have challenged her the way I did, but I was six and thought the world revolved around me.

I went on to “discover” patterns for other simple multiplication problems that saved me a bit of time over the years, and even eventually memorized all the basic times tables. For several years, I got away with doing all of my math problems in my head and never showing my work. This irritated my teachers to no end and probably is what made learning manual Calculus feel like one of the most tedious tasks I’ve ever undertaken.

Many years later, while attending Southern Utah University, I learned additional math practices in my Discrete Mathematics class that used similar patterns and approaches to my early experimentation. Fun realization, that.

The Point (There Is One)

I knew, even as a youth, I had spent more time working on this solution than it would have taken just to write out the problems as I had been asked.

Today, I recognize my solution as less simple from the Mrs. D’s viewpoint. She was giving students one tried and true way of solving all multiplication problems. While it wasn’t easier for me to achieve my work, it was certainly simpler to teach. Just because there is a pattern or formula, doesn’t make a solution better based on that merit alone.

A fractal bacteria colony may BE simple once you understand it, but at first glance, it seems strange and complex.

fractal_bacteria_colony
Fractal Bacteria Colony

All anecdotes aside, the pursuit of better, simpler solutions is one that I’ve been chasing from a young age. It is the same pursuit of any scientist including the computer scientist. Let’s not forget this as we write code. Our ultimate goal should be the simpler solution because it will lead to better, more maintainable code. It will save time overall even if there is an opportunity cost up front.

We must remember that what is simpler from our particular point of view may not make sense from another’s perspective. A simple solution is only as good as our colleagues’ ability to grasp it.

Agile Teams Don’t Always Have Tech Leads, But When They Do…

I queued this post last year when I was a Technical Lead for an outstanding scrum team at HealthEquity. The role was new for me here, although I’ve had leadership roles at several companies over the years.

A Little Background

Our team consisted of six people who had never worked together directly. We not only found a way to meet the requirements of the project, but we also did it on time, on budget, with little overtime, and quite a lot of team fun.

At any rate, the team was very successful, and its success was noticed. It resulted in considerable renown for the team. Credit where it is due: the team’s success belongs to the entire team. My role certainly wasn’t more significant than any other. If anything, it was less important.

I’ve been asked by several people how we did it. My answer, as always, is that we have an awesome team. As a contributing member, I shared some of the load. Maybe my philosophy as a tech lead within the team helped as well. I’d like to think so.

agileTeamsDontAlways

My Tech Lead Philosophy

Top Tier Things To Not Forget

  • Principle #1: Respect the opinions of everyone. We are all professionals.
  • Principle #2: Make other team members’ jobs easier.
  • Principle #3: A tech lead isn’t the only person who has great ideas.

Also Good To Remember

  • Patience. Patience. Patience. Patience. Patience. Patience.
  • Give guidance by asking questions. It isn’t always possible, but it usually is.
  • Free team members to focus on sprint work by being the first point of contact.
    • I choose to address this by sitting at the entrance to our team area.
  • Encourage team members to learn by taking tasks that challenge them.
  • Take sprint tasks that don’t interest other team members when possible.

Probably Best Not To Do This Stuff…

  • Dictating solutions and stifling creativity.
  • Taking all the fun tasks for yourself.
  • Interrupting people unnecessarily.
  • Wheaton’s Law: Don’t Be A (Jerk).

Obviously, I’m not perfect in any of these things. I do find that having the philosophy helps point me in the right direction. I hope it helps you as well. If you’d like to read more on this topic, I wrote a follow-up article in 2017 about Influence vs Authority on Agile Teams.

Interested in technical leadership and not sure where to start? Lead some coding katas for your team.

As always, hit me up on Twitter with questions or comments. Until next time.

Learn Like A Viking

My friend Ron Coulson (who I’ve known practically forever) has challenged himself to write a poem a day this year. He is well underway. This is #63 of 366, because, you know, leap year.

I’ll be the first to admit I’m no poet, but the subject matter here is near and dear to me — learning! I also enjoy a good metaphor and the Viking theme here is vivid and wonderful. Overall, it struck me as fantastic and I thought I’d like to share it with you all. Ron generously agreed. I hope you enjoy it as much as I did!

drinking-horn

Untitled

Let us devour knowledge in a way
That would make vikings cringe
Let’s gorge ourselves until we
Vomit certainties no one can dispute
Let truths drip from our chins
As the spittle of enlightenment
Lands in our opponents eyes
Raise your mugs, my friends
Then chug down life’s lessons
Until we are drunken sages
Then sleep
Then do it all again

-Ron Coulson (2016)

If these words have inspired you to learn, check out the new page I’ve added to the blog where I’m attempting to keep track of some of the best coding katas. Try one out. Let me know if you have favorite katas you’d like to see there.

Quotable Quotes: Henry Wadsworth Longfellow

maxresdefault

Today I had the pleasure of reading A Psalm Of Life by Henry Wadsworth Longfellow. The following is the last line:

Let us, then, be up and doing,
With a heart for any fate ;
Still achieving, still pursuing,
Learn to labor and to wait.

Recently, Richie Franklin shared this beautiful psalm by Longfellow with my writer support group. Regretfully, I couldn’t read it when he posted the poem, but I opened it in a browser tab for future perusal. I’m a terrible tab hoarder and will keep as many as 50 open at once.

Time passed, as time does, and soon at least a month had gone by — I know, I’m pathetically busy at times. Today I had a little more time on my hands than usual, and I started closing out ancient tabs by reading them or by deciding they weren’t important and killing them without wasting my time. I’m so glad I was able to be in the right state of mind to read and enjoy this beautiful work.

Much more eloquent than I could even aspire to be, Longfellow reminds us to be present in the present, work hard, be patient, and enjoy the fruits of our labors. Oh, and make the best of everything life has to offer.

Wonderful advice for this era of near-instant gratification.

This post brought to you by the most patient dog I’ve EVER SEEN:

giphyPatientDog